Chemosensory coding by neurons in the coeloconic sensilla of the Drosophila antenna.
نویسندگان
چکیده
Odor coding is based on the diverse sensitivities and response properties of olfactory receptor neurons (ORNs). In the Drosophila antenna, ORNs are housed in three major morphological types of sensilla. Although investigation of the Drosophila olfactory system has been expanding rapidly, the ORNs in one of these types, the coeloconic sensilla, have been essentially unexplored. We define four functional types of coeloconic sensilla through extracellular physiological recordings. Each type contains at least two neurons, with a total of at least seven distinct ORN classes that vary remarkably in their breadth of tuning. Analysis of 315 odorant-ORN combinations reveals how these neurons sample odor space via both excitation and inhibition. We identify a class of neurons that is narrowly tuned to small amines, and we find humidity detectors that define a cellular basis for hygroreception in Drosophila. The temporal dynamics of responses vary widely, enhancing the potential for complexity in the odor code. Molecular and genetic analysis shows that a broadly tuned ORN, antennal coeloconic 3B (ac3B), requires the odor receptor gene Or35a for its response in vivo. The activity of ac3B is not required for the response of the other ORN within that sensillum, ac3A. The functional analysis presented here, revealing a combination of highly specialized neurons and a broadly tuned ORN, along with the ancient origin of coeloconic sensilla, suggests that the specificities of these ORNs may reflect basic needs of an ancestral insect.
منابع مشابه
An RNA-Seq Screen of the Drosophila Antenna Identifies a Transporter Necessary for Ammonia Detection
Many insect vectors of disease detect their hosts through olfactory cues, and thus it is of great interest to understand better how odors are encoded. However, little is known about the molecular underpinnings that support the unique function of coeloconic sensilla, an ancient and conserved class of sensilla that detect amines and acids, including components of human odor that are cues for many...
متن کاملInactivation of olfactory sensilla of a single morphological type differentially affects the response of Drosophila to odors.
The olfactory organs on the head of Drosophila, antennae and maxillary palps, contain several hundred olfactory hairs, each with one or more olfactory receptor neurons. Olfactory hairs belong to one of three main morphological types, trichoid, basiconic, and coeloconic sensilla, and show characteristic spatial distribution patterns on the surface of the antenna and maxillary palps. Here we show...
متن کاملVariant Ionotropic Receptors Are Expressed in Olfactory Sensory Neurons of Coeloconic Sensilla on the Antenna of the Desert Locust (Schistocerca gregaria)
The behaviour of the desert locust, Schistocera gregaria, is largely directed by volatile olfactory cues. The relevant odorants are detected by specialized antennal sensory neurons which project their sensory dendrites into hair-like structures, the sensilla. Generally, the responsiveness of the antennal chemosensory cells is determined by specific receptors which may be either odorant receptor...
متن کاملCoexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding.
Odorant-binding proteins (OBPs) are small soluble proteins present in the aqueous medium surrounding olfactory receptor neurons. Their function in olfaction is still unknown: they have been proposed to facilitate the transit of hydrophobic molecules to olfactory receptors, to deactivate the odorant stimulus, and/or to play a role in chemosensory coding. In this study we examine the genomic orga...
متن کاملIdentification of a Drosophila Glucose Receptor Using Ca2+ Imaging of Single Chemosensory Neurons
Evaluation of food compounds by chemosensory cells is essential for animals to make appropriate feeding decisions. In the fruit fly Drosophila melanogaster, structurally diverse chemicals are detected by multimeric receptors composed of members of a large family of Gustatory receptor (Gr) proteins. Putative sugar and bitter receptors are expressed in distinct subsets of Gustatory Receptor Neuro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 37 شماره
صفحات -
تاریخ انتشار 2005